Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(6)2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36985886

RESUMO

The study described in this paper was conducted in the framework of the European nPSize project (EMPIR program) with the main objective of proposing new reference certified nanomaterials for the market in order to improve the reliability and traceability of nanoparticle size measurements. For this purpose, bimodal populations as well as complexly shaped nanoparticles (bipyramids, cubes, and rods) were synthesized. An inter-laboratory comparison was organized for comparing the size measurements of the selected nanoparticle samples performed with electron microscopy (TEM, SEM, and TSEM), scanning probe microscopy (AFM), or small-angle X-ray scattering (SAXS). The results demonstrate good consistency of the measured size by the different techniques in cases where special care was taken for sample preparation, instrument calibration, and the clear definition of the measurand. For each characterization method, the calibration process is described and a semi-quantitative table grouping the main error sources is proposed for estimating the uncertainties associated with the measurements. Regarding microscopy-based techniques applied to complexly shaped nanoparticles, data dispersion can be observed when the size measurements are affected by the orientation of the nanoparticles on the substrate. For the most complex materials, hybrid approaches combining several complementary techniques were tested, with the outcome being that the reliability of the size results was improved.

2.
Ultramicroscopy ; 234: 113480, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35151042

RESUMO

Since both size and shape of nanoparticles are challenging to be quantitatively measured, traceable 3D measurements are nowadays an issue. 3D nanometrology plays a crucial role to reduce the uncertainty of measurements, improve traceable calibration of samples and implement new approaches, models, and methodologies in the study of the nanomaterials. AFM measurement of nanoparticles with unusual shape represent a non-trivial challenge due to the convolution with the finite size of the tip. In this work, geometric approaches for the determination of critical sizes of TiO2 anatase bipyramids and nanosheets are described. An uncertainty budget is estimated for each nanoparticle size with the aim of assessing the different sources of error to obtain a more reliable and consistent result. The combined standard uncertainties are respectively less than 5% and 10% of the dimensions of bipyramids and nanosheets. Due to the stability and monomodal distribution of their critical sizes, bipyramids and nanosheets are suitable to apply as candidate reference materials at the nanoscale. Moreover, quantitative measurements of shape and texture descriptors are discussed in order to understand the quality of the synthetized batch.

3.
Nanomaterials (Basel) ; 11(12)2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34947708

RESUMO

In this paper, the accurate determination of the size and size distribution of bipyramidal anatase nanoparticles (NPs) after deposition as single particles on a silicon substrate by correlative Scanning Electron Microscopy (SEM) with Atomic Force Microscopy (AFM) analysis is described as a new measurement procedure for metrological purposes. The knowledge of the exact orientation of the NPs is a crucial step in extracting the real 3D dimensions of the particles. Two approaches are proposed to determine the geometrical orientation of individual nano-bipyramides: (i) AFM profiling along the long bipyramid axis and (ii) stage tilting followed by SEM imaging. Furthermore, a recently developed method, Transmission Kikuchi Diffraction (TKD), which needs preparation of the crystalline NPs on electron-transparent substrates such as TEM grids, has been tested with respect to its capability of identifying the geometrical orientation of the individual NPs. With the NPs prepared homogeneously on a TEM grid, the transmission mode in a SEM, i.e., STEM-in-SEM (or T-SEM), can be also applied to extract accurate projection dimensions of the nanoparticles from the same sample area as that analysed by SEM, TKD and possibly AFM. Finally, Small Angle X-ray Scattering (SAXS) can be used as an ensemble technique able to measure the NPs in liquid suspension and, with ab-initio knowledge of the NP shape from the descriptive imaging techniques, to provide traceable NP size distribution and particle concentration.

4.
Sci Rep ; 10(1): 18910, 2020 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-33144623

RESUMO

In the present work a series of design rules are developed in order to tune the morphology of TiO2 nanoparticles through hydrothermal process. Through a careful experimental design, the influence of relevant process parameters on the synthesis outcome are studied, reaching to the develop predictive models by using Machine Learning methods. The models, after the validation and training, are able to predict with high accuracy the synthesis outcome in terms of nanoparticle size, polydispersity and aspect ratio. Furthermore, they are implemented by reverse engineering approach to do the inverse process, i.e. obtain the optimal synthesis parameters given a specific product characteristic. For the first time, it is presented a synthesis method that allows continuous and precise control of NPs morphology with the possibility to tune the aspect ratio over a large range from 1.4 (perfect truncated bipyramids) to 6 (elongated nanoparticles) and the length from 20 to 140 nm.

5.
Nanomaterials (Basel) ; 10(9)2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32937945

RESUMO

Benzotriazoles are a new class of organic emerging pollutants ubiquitously found in the environment. The increase of their concentration to detectable values is the consequence of the inability of the Conventional Waste Water Plants (CWWPs) to abate these products. We subjected 1H-benzotriazole (BTz), tolyltriazole (TTz), and Tinuvin P (TP, a common UV plastic stabilizer) to photocatalytic degradation under UV-irradiated TiO2 in different conditions. The principal photoformed intermediates, the relationship between the degradation rate and the pH, the degree of mineralization, and the fate of the organic nitrogen were investigated. Under the adopted experimental conditions, all the studied substrates were rapidly photocatalytically transformed (the maximum degradation rates for BTz and TTz were (3.88 ± 0.05) × 10-2 and (2.11 ± 0.09) × 10-2 mM min-1, respectively) and mineralized (the mineralization rate for BTz and TTz was 4.0 × 10-3 mM C min-1 for both substrates). Different from the 1,2,4-triazole rings that are not completely mineralized under photocatalytic conditions, 1H-benzotriazole and tolyltriazole were completely mineralized with a mechanism that involved a partial conversion of organic nitrogen to N2. The photocatalytic process activated by UV-irradiated TiO2 is an efficient tool to abate 1H-benzotriazole and its derivatives, avoiding their release in the environment.

6.
Molecules ; 24(24)2019 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-31818013

RESUMO

Anatase nanoparticles in suspension have demonstrated high photoactivity that can be exploited for pollutant removal in water phases. The main drawback of this system is the difficulty of recovering (and eventually reusing) the nanoparticles after their use, and the possible interference of inorganic salts (e.g., sulfates) that can reduce the performance of the photocatalyst. The present work describes the development of a cordierite-honeycomb-supported TiO2 film to eliminate the problems of catalyst recovery. The catalyst was then tested against phenol in the presence of increasing concentrations of sulfates in a specially developed recirculating modular photoreactor, able to accommodate the supported catalyst and scalable for application at industrial level. The effect of SO42- was evaluated at different concentrations, showing a slight deactivation only at very high sulfate concentration (≥3 g L-1). Lastly, in the framework of the EU project Project Ô, the catalyst was tested in the treatment of real wastewater from a textile company containing a relevant concentration of sulfates, highlighting the stability of the photocatalyst.


Assuntos
Cerâmica/química , Fenóis/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Catálise , Nanopartículas/química , Fotólise/efeitos dos fármacos , Titânio/química
7.
Food Chem Toxicol ; 127: 89-100, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30849403

RESUMO

The aim of this study was to evaluate cytotoxicity (WST-1 assay), LDH release (LDH assay) and genotoxicity (Comet assay) of three engineered TiO2-NPs with different shapes (bipyramids, rods, platelets) in comparison with two commercial TiO2-NPs (P25, food grade). After NPs characterization (SEM/T-SEM and DLS), biological effects of NPs were assessed on BEAS-2B cells in presence/absence of light. The cellular uptake of NPs was analyzed using Raman spectroscopy. The cytotoxic effects were mostly slight. After light exposure, the largest cytotoxicity (WST-1 assay) was observed for rods; P25, bipyramids and platelets showed a similar effect; no effect was induced by food grade. No LDH release was detected, confirming the low effect on plasma membrane. Food grade and platelets induced direct genotoxicity while P25, food grade and platelets caused oxidative DNA damage. No genotoxic or oxidative damage was induced by bipyramids and rods. Biological effects were overall lower in darkness than after light exposure. Considering that only food grade, P25 and platelets (more agglomerated) were internalized by cells, the uptake resulted correlated with genotoxicity. In conclusion, cytotoxicity of NPs was low and affected by shape and light exposure, while genotoxicity was influenced by cellular-uptake and aggregation tendency.


Assuntos
Brônquios/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ensaio Cometa , Células Epiteliais/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Titânio/toxicidade , Brônquios/citologia , Brônquios/enzimologia , Linhagem Celular , Dano ao DNA , Células Epiteliais/enzimologia , Humanos , L-Lactato Desidrogenase/metabolismo , Microscopia Eletrônica de Transmissão e Varredura , Estresse Oxidativo/efeitos dos fármacos , Tamanho da Partícula , Análise Espectral Raman/métodos
8.
Environ Sci Process Impacts ; 20(7): 1007-1019, 2018 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-29876570

RESUMO

By a combination of transient absorption spectroscopy and steady-state irradiation experiments, we investigated the transformation of phenol and furfuryl alcohol (FFA) sensitised by irradiated 4-carboxybenzophenone (CBBP). The latter is a reasonable proxy molecule to assess the reactivity of the excited triplet states of the chromophoric dissolved organic matter that occurs in natural waters. The main reactive species for the transformation of both phenol and FFA was the CBBP triplet state, despite the fact that FFA is a commonly used probe for 1O2. In the case of FFA it was possible to develop a simple kinetic model that fitted well the experimental data obtained by steady-state irradiation, in a wide range of FFA concentration values. In the case of phenol the model was made much more complex by the likely occurrence of back reactions between radical species (e.g., phenoxyl and superoxide). This problem can be tackled by considering only the experimental data at low phenol concentration, where the degradation rate increases linearly with concentration. We do not recommend the use of 1O2 scavengers/quenchers such as sodium azide to elucidate CBBP photoreaction pathways, because the azide provides misleading results by also acting as a triplet-state quencher. Based on the experimental data, we propose a methodology for the measurement of the CBBP triplet-sensitisation rate constants from steady-state irradiation experiments, allowing for a better assessment of the triplet-sensitised degradation of emerging contaminants.


Assuntos
Benzofenonas/química , Inativação Luminosa Assistida por Cromóforo , Monitoramento Ambiental/métodos , Furanos/química , Fenol/química , Fotólise , Poluentes Químicos da Água/química , Tempo de Reação
9.
Environ Sci Technol ; 52(11): 6334-6342, 2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29676902

RESUMO

The secondary pollutant 3,4-dichloroaniline (DCA) is produced by the biological degradation of several herbicides, including propanil in paddy fields. The enzymatic hydrolysis of propanil yields DCA with almost quantitative yield. DCA undergoes rather fast photodegradation in paddy water, mostly by direct photolysis. An exception might be represented by the cases (rather rare in paddies) of quite high nitrate concentration (around 50 mg of NO3- L-1), when DCA degradation by CO3•- would play a comparable role to that by direct photolysis. The experimentally measured photoreactivity parameters were used as input data for a photochemical model, which predicted a DCA lifetime of 0.5-1 days in sunlit paddy fields in late May, when propanil is usually applied. The model predictions compare remarkably well with the DCA attenuation data reported in field studies, carried out in paddies in temperate regions. Moreover, a consecutive reaction model based on typical biological (propanil) and photochemical (DCA) lifetimes reproduced quite well the time trends of both compounds in paddies, as reported in the literature. These successful comparisons suggest that photodegradation in general, and direct photolysis in particular, may play a key role in DCA attenuation in paddy water.


Assuntos
Propanil , Poluentes Químicos da Água , Compostos de Anilina , Fotoquímica , Fotólise , Água
10.
Chemosphere ; 186: 185-192, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28778016

RESUMO

By use of photochemical modelling we show that acesulfame K (ACE) can undergo photodegradation in surface waters, mainly by reaction with OH and possibly 3CDOM* (the triplet states of chromophoric dissolved organic matter). With the possible exception of shallow water bodies containing low dissolved organic carbon, we predict ACE to be a refractory compound in environmental waters which agrees well with many literature reports. We used two methods to measure the photoreactivity parameters of ACE, of which one is based on the monitoring of the time evolution of ACE alone and the other is based on the monitoring of both ACE and a reference compound (hereafter, they are referred to as substrate-only and substrate + reference method, respectively). The substrate + reference method can be time-saving, but it is potentially prone to interferences. In this work, ibuprofen and atrazine were used as reference compounds of known behaviour to study the photoreactivity of ACE by competition kinetics in the substrate + reference method. The two methods gave overall comparable results, partially because two different reference compounds instead of only one were used in the substrate + reference method. By so doing, however, one loses part of the time-saving advantage of the substrate + reference method.


Assuntos
Processos Fotoquímicos , Tiazinas/química , Poluentes Químicos da Água/química , Atrazina , Meio Ambiente , Ibuprofeno , Cinética , Modelos Químicos , Fotólise , Tiazinas/análise , Poluentes Químicos da Água/análise
11.
Environ Sci Technol ; 51(13): 7486-7495, 2017 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-28581723

RESUMO

Irradiated nitrophenols can produce nitrite and nitrous acid (HONO) in bulk aqueous solutions and in viscous aqueous films, simulating the conditions of a high-solute-strength aqueous aerosol, with comparable quantum yields in solution and viscous films (10-5-10-4 in the case of 4-nitrophenol) and overall reaction yields up to 0.3 in solution. The process is particularly important for the para-nitrophenols, possibly because their less sterically hindered nitro groups can be released more easily as nitrite and HONO. The nitrophenols giving the highest photoproduction rates of nitrite and HONO (most notably, 4-nitrophenol and 2-methyl-4-nitrophenol) could significantly contribute to the occurrence of nitrite in aqueous phases in contact with the atmosphere. Interestingly, dew-water evaporation has shown potential to contribute to the gas-phase HONO levels during the morning, which accounts for the possible importance of the studied process.


Assuntos
Aerossóis , Nitritos , Processos Fotoquímicos , Nitrofenóis , Ácido Nitroso
12.
Chemosphere ; 170: 124-133, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27987461

RESUMO

Gemfibrozil (GFZ) is a relatively persistent pollutant in surface-water environments and it is rather recalcitrant to biological degradation. The GFZ photochemical lifetimes are relatively short in shallow waters with low levels of dissolved organic carbon (DOC), but they can reach the month-year range in deep and high-DOC waters. The main reason is that GFZ undergoes negligible reaction with singlet oxygen or degradation sensitised by the triplet states of chromophoric dissolved organic matter, which are the usually prevalent photochemical pathways in deep and high-DOC sunlit waters. Nitrate and nitrite scarcely affect the overall GFZ lifetimes, but they can shift photodegradation from direct photolysis to the OH process. These two pathways are the main GFZ phototransformation routes, with the direct photolysis prevailing in shallow environments during summer. Under these conditions the GFZ photochemical lifetimes are also shorter and the environmental significance of photodegradation correspondingly higher. The direct photolysis of GFZ under UVB irradiation yielded several transformation intermediates deriving from oxidation or cleavage of the aliphatic lateral chain. A quinone derivative (2,5-dimethyl-1,4-benzoquinone), a likely oxidation product of the transformation intermediate 2,5-dimethylphenol, is expected to be the most acutely and chronically toxic compound arising from GFZ direct photolysis. Interestingly, literature evidence suggests that the same toxic intermediate would be formed upon OH reaction.


Assuntos
Benzoquinonas/análise , Cicloexenos/análise , Genfibrozila/análise , Poluentes Químicos da Água/análise , Meio Ambiente , Meia-Vida , Radical Hidroxila/química , Cinética , Modelos Químicos , Modelos Teóricos , Nitratos/análise , Nitritos/análise , Oxigênio/química , Processos Fotoquímicos , Fotólise , Raios Ultravioleta , Água
13.
Water Res ; 105: 383-394, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27657658

RESUMO

Phototransformation is important for the fate in surface waters of the pharmaceuticals diclofenac (DIC) and naproxen (NAP) and for clofibric acid (CLO), a metabolite of the drug clofibrate. The goal of this paper is to provide an overview of the prevailing photochemical processes, which these compounds undergo in the different conditions found in freshwater environments. The modelled photochemical half-life times of NAP and DIC range from a few days to some months, depending on water conditions (chemistry and depth) and on the season. The model indicates that direct photolysis is the dominant degradation pathway of DIC and NAP in sunlit surface waters, and potentially toxic cyclic amides were detected as intermediates of DIC direct phototransformation. With modelled half-life times in the month-year range, CLO is predicted to be more photostable than DIC or NAP and to be degraded mainly by reaction with the •OH radical and with the triplet states of chromophoric dissolved organic matter (3CDOM*). The CLO intermediates arising from these processes and detected in this study (hydroquinone and 4-chlorophenol) are, respectively, a chronic toxicant to aquatic organisms and a possible carcinogen for humans. Hydroquinone is formed with only ∼5% yield upon CLO triplet-sensitised transformation, but it is highly toxic for algae and crustaceans. In contrast, the formation yield of 4-chlorophenol reaches ∼50% upon triplet sensitisation and ∼10% by ·OH reaction. The comparison of model predictions with field data from a previous study yielded a very good agreement in the case of DIC and, when using 4-carboxybenzophenone as proxy for triplet sensitisation by CDOM, a good agreement was found for CLO as well. In the case of NAP, the comparison with field data suggests that its direct photolysis quantum yield approaches or even falls below the lower range of literature values.


Assuntos
Ácido Clofíbrico , Naproxeno , Diclofenaco , Cinética , Modelos Químicos , Fotólise , Poluentes Químicos da Água/química
14.
Chemosphere ; 162: 91-8, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27487093

RESUMO

The shallow lakes located in Terra Nova Bay, Antarctica, are free from ice for only up to a couple of months (mid December to early/mid February) during the austral summer. In the rest of the year, the ice cover shields the light and inhibits the photochemical processes in the water columns. Previous work has shown that chromophoric dissolved organic matter (CDOM) in these lakes is very reactive photochemically. A model assessment is here provided of lake-water photoreactivity in field conditions, based on experimental data of lake water absorption spectra, chemistry and photochemistry obtained previously, taking into account the water depth and the irradiation conditions of the Antarctic summer. The chosen sample contaminants were the solar filter benzophenone-3 and the antimicrobial agent triclosan, which have very well known photoreactivity and have been found in a variety of environmental matrices in the Antarctic continent. The two compounds would have a half-life time of just a few days or less in the lake water during the Antarctic summertime, largely due to reaction with CDOM triplet states ((3)CDOM*). In general, pollutants that occur in the ice and could be released to lake water upon ice melting (around or soon after the December solstice) would be quickly photodegraded if they undergo fast reaction with (3)CDOM*. With some compounds, the important (3)CDOM* reactions might favour the production of harmful secondary pollutants, such as 2,8-dichlorodibenzodioxin from the basic (anionic) form of triclosan.


Assuntos
Baías/química , Benzofenonas/análise , Lagos/química , Luz Solar , Triclosan/análise , Poluentes Químicos da Água/análise , Regiões Antárticas , Benzofenonas/efeitos da radiação , Meia-Vida , Camada de Gelo , Modelos Teóricos , Processos Fotoquímicos , Fotólise , Triclosan/efeitos da radiação , Poluentes Químicos da Água/efeitos da radiação
16.
Chemosphere ; 147: 477-89, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26802934

RESUMO

A work on the characterization of the air quality in the city of Turin was carried out in different sampling periods, reflecting early autumn and winter conditions, including a snow episode during the early 2012 European cold wave. The concentrations of 13 elements in eight size fractions of the aerosol were determined using inductively coupled plasma-mass spectrometry. The collection was carried out with a Andersen MkII cascade impactor. The size distribution of elements allowed the identification of three main behavioural types: (a) elements associated with coarse particles (Cd, Cr, Cu, Fe, Mn, Mo and Sn); (b) elements found within fine particles (As, Co, Pb and V) and (c) elements spread throughout the entire size range (Ni and Zn). Principal Component Analysis allowed to examine the relationships between the inorganic elements and to infer about their origin. Chemometric investigation and assessment of similarity in the distribution led to similar conclusions on the sources. The concentration of gaseous trace pollutants (O3, NOx and VOCs) was determined. The concentrations of these pollutants are scarcely correlated with the metal contents of all the size classes of the PM. The differences found in the O3, NO2 and VOCs levels of the two winter campaigns due to the high photochemical reactivity in the period after the snow episode, do not reflect in differences in the metals distribution in the PM. Since PM metals, NOx and VOC have common sources, this behaviour is due to relevant differences in the transformation and deposition processes.


Assuntos
Poluentes Atmosféricos/análise , Metais/análise , Material Particulado/análise , Aerossóis/análise , Cidades , Monitoramento Ambiental/métodos , Monitoramento Ambiental/estatística & dados numéricos , Itália , Óxidos de Nitrogênio/análise , Ozônio/análise , Tamanho da Partícula , Análise de Componente Principal , Estações do Ano , Neve , Compostos Orgânicos Voláteis/análise
17.
Photochem Photobiol Sci ; 14(11): 2087-96, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26463252

RESUMO

The singlet and triplet excited states of 4-hydroxybenzophenone (4BPOH) undergo deprotonation in the presence of water to produce the anionic ground-state, causing fluorescence quenching and photoactivity inhibition. The same process does not take place in an aprotic solvent such as acetonitrile. In acetonitrile, 4BPOH is fluorescent (interestingly, one of its fluorescence peaks overlaps with peak C of humic substances), it yields singlet oxygen upon irradiation and induces the triplet-sensitised transformation of phenol (with a rate constant of (6.6 ± 0.3) × 10(7) M(-1) s(-1) (µ ± σ) between phenol itself and a triplet 4BPOH). The 4BPOH shows an intermediate behaviour in a partially protic solvent such as 2-propanol, where some deprotonation of the excited states is observed. In acetonitrile/2-propanol mixtures (at least up to 50% of 2-propanol) there is also some evidence of alcohol oxidation by the 4BPOH triplet state, while the experimental data are silent concerning such a possibility in pure 2-propanol. Considering that benzophenones are important components of chromophoric dissolved organic matter (CDOM) in surface waters, the present findings could have significance for the photoactivity of the hydrophilic surface layers vs. the hydrophobic cores of CDOM.

18.
J Sep Sci ; 38(20): 3661-8, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26249317

RESUMO

The aim of this study was the evaluation of the binding performances and selectivity of molecularly imprinted beads prepared toward several penicillins (i) by hierarchical bulk polymerization in the pores of template-grafted silica microbeads (hMIPs) and (ii) by Pickering emulsion polymerization in the presence of template-decorated silica nanobeads (pMIPs). 6-Aminopenicillanic acid was chosen as the common fragmental mimic template. Both approaches produced micron-sized polymeric beads with good recognition properties toward the target ligands whereas the selectivity pattern appeared quite different. The polymer prepared by the Pickering emulsion approach showed binding properties similar to imprinted beads prepared by hierarchical approach. Equilibrium binding constants changed their values from 0.1-0.2 × 10(6) (hMIPs) to 0.2-0.6 × 10(6) M(-1) (pMIPs), while the binding site densities changed from 3.7-4.8 (hMIPs) to 0.3-0.55 µmol/g (pMIPs). Compared to the hierarchical polymerization, Pickering emulsion polymerization represents a more practical approach when a template mimic needs to be used.

19.
Chemosphere ; 134: 452-8, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26001938

RESUMO

The direct and indirect photodegradation of six cephalosporins was predicted using a photochemical model, on the basis of literature values of photochemical reactivity. Environmental photodegradation would be important in surface water bodies with depth ⩽ 2-3m, and/or in deeper waters with low values of the dissolved organic carbon (DOC ⩽ 1 mg C L(-1)). The half-life times would range from a few days to a couple of weeks in summertime. In deeper and higher-DOC waters and/or in different seasons, hydrolysis could prevail over photodegradation. The direct photolysis of cephalosporins is environmentally concerning because it is known to produce toxic intermediates. It would be a major pathway for cefazolin, an important one for amoxicillin and cefotaxime and, at pH<6.5, for cefapirin as well. In contrast, direct photolysis would be negligible for cefradine and cefalexin. The DOC values would influence the fraction of photodegradation accounted for by direct photolysis in shallow water, to a different extent depending on the role of sensitisation by the triplet states of chromophoric dissolved organic matter.


Assuntos
Cefalosporinas/química , Fotólise , Poluentes Químicos da Água/análise , Amoxicilina/química , Carbono/química , Cefazolina/química , Cefalexina/química , Cefradina/química , Água Doce/química , Meia-Vida , Concentração de Íons de Hidrogênio , Hidrólise , Modelos Químicos , Modelos Teóricos
20.
Sci Total Environ ; 527-528: 322-7, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25965046

RESUMO

Lake circulation is an important phenomenon that ensures oxygenation of the water column. Here we report that aeration of anoxic hypolimnion water causes production of highly reactive hydroxyl radicals (·OH), which are also produced photochemically in the epilimnion. Model calculations suggest that the dark process of ·OH generation can be comparable with photochemical reactions in some lake environments, provided that the hypolimnion is a significant fraction of the whole lake volume. In these cases, lake overturn could significantly contribute to the yearly ·OH budget of the lake water and might cause significant degradation of some pollutants, for which the reaction with ·OH is an important removal process from surface waters.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...